CHAPTER 9
Radio Computer Data
Vast quantities of data traffic are transmitted daily over the
radio frequency spectrum; hacking is simply a matter of hooking up a
good quality radio receiver and a computer through a suitable
interface. On offer are news services from the world's great press
agencies, commercial and maritime messages, meteorological data, and
plenty of heavily-encrypted diplomatic and military traffic. A
variety of systems, protocols and transmission methods are in use and
the hacker jaded by land-line communication (and perhaps for the
moment put off by the cost of phone calls) will find plenty of fun on
the airwaves.
The techniques of radio hacking are similar to those necessary for
computer hacking. Data transmission over the airwaves uses either a
series of audio tones to indicate binary 0 and 1 which are modulated
on transmit and demodulated on receive or alternatively frequency
shift keying which involves the sending of one of two slightly
different radio frequency carriers, corresponding to binary 0 or
binary 1. The two methods of transmission sound identical on a
communications receiver (see below) and both are treated the same for
decoding purposes. The tones are different from those used on
land-lines--'space' is nearly always 1275 Hz and 'mark' can be one of
three tones: 1445 Hz (170 Hz shift--quite often used by amateurs and
with certain technical advantages); 1725 Hz (450 Hz shift--the one
most commonly used by commercial and news services) and 2125 Hz (850
Hz shift--also used commercially). The commonest protocol uses the
5-bit Baudot code rather than 7-bit or 8-bit ASCII. The asynchronous,
start/stop mode is the most common. Transmission speeds include: 45
baud (60 words/minute), 50 baud (66 words/minute), 75 baud (100
words/ minute). 50 baud is the most common. However, many
interesting variants can be heard--special versions of Baudot for
non- European languages, error correction protocols, and various
forms of facsimile.
The material of greatest interest is to be found in the high
frequency or 'short wave' part of the radio spectrum, which goes from
2 MHz, just above the top of the medium wave broadcast band, through
to 30 MHz, which is the far end of the 10-meter amateur band which
itself is just above the well-known Citizens' Band at 27 MHz.
** Page 99
The reason this section of the spectrum is so interesting is that,
unique among radio waves, it has the capacity for world-wide
propagation without the use of satellites, the radio signals being
bounced back, in varying degrees, by the ionosphere. This special
quality means that everyone wants to use HF (high frequency)
transmission--not only international broadcasters, the propaganda
efforts of which are the most familiar uses of HF. Data transmission
certainly occurs on all parts of the radio spectrum, from VLF (Very
Low Frequency, the portion below the Long Wave broadcast band which
is used for submarine communication), through the commercial and
military VHF and UHF bands, beyond SHF (Super High Frequency, just
above 1000 MHz) right to the microwave bands. But HF is the most
rewarding in terms of range of material available, content of
messages and effort required to access it.
Before going any further, hackers should be aware that in a number
of countries even receiving radio traffic for which you are not
licensed is an offence; in nearly all countries making use of
information so received is also an offence and, in the case of news
agency material, breach of copyright may also present a problem.
However, owning the equipment required is usually not illegal and,
since few countries require a special license to listen to amateur
radio traffic (as opposed to transmitting, where a license is needed)
and since amateurs transmit in a variety of data modes as well,
hackers can set about acquiring the necessary capability without
fear.
Equipment
The equipment required consists of a communications receiver, an
antenna, an interface unit/software and a computer.
Communications receiver - This is the name given to a good quality
high frequency receiver. Suitable models can be obtained,
second-hand, at around £100; new receivers cost upwards of £175.
There is no point is buying a radio simply designed to pick up
shortwave broadcasts which will lack the sensitivity, selectivity and
resolution necessary. A minimum specification would be:
Coverage 500 kHz--30 MHz
Resolution >100 Hz
** Page 100
Modes AM, Upper Side Band, Lower Side Band,
CW (Morse)
Tuning would be either by two knobs, one for MHz, one for kHz, or
by keypad. On more expensive models it is possible to vary the
bandwidth of the receiver so that it can be widened for musical
fidelity and narrowed when listening to bands with many signals close
to one another.
Broadcast stations transmit using AM (amplitude modulation), but
in the person-to-person contacts of the aeronautical, maritime and
amateur world, single-side-band-suppressed carrier techniques are
used--the receiver will feature a switch marked AM, USB, LSB, CW etc.
Side-band transmission uses less frequency space and so allows more
simultaneous conversations to take place, and is also more efficient
in its use of the power available at the transmitter. The chief
disadvantage is that equipment for receiving is more expensive and
must be more accurately tuned. Upper side band is used on the whole
for voice traffic, and lower side band for data traffic. (Radio
amateurs are an exception: they also use lower side-band for voice
transmissions below 10 MHz.) Suitable sources of supply for
communications receivers are amateur radio dealers, whose addresses
may be found in specialist magazines like Practical Wireless, Amateur
Radio, Ham Radio Today.
Antenna - Antennas are crucial to good shortwave reception--the sort
of short 'whip' aerial found on portable radios is quite insufficient
if you are to capture transmissions from across the globe. When using
a computer close to a radio you must also take considerable care to
ensure that interference from the CPU and monitor don't squash the
signal you are trying to receive. The sort of antenna I recommend is
the 'active dipole', which has the twin advantages of being small and
of requiring little operational attention. It consists of a couple of
1-meter lengths of wire tied parallel to the ground and meeting in a
small plastic box. This is mounted as high as possible, away from
interference, and is the 'active' part. From the plastic box descends
coaxial cable which is brought down to a small power supply next to
the receiver and from there the signal is fed into the receiver
itself. The plastic box contains special low-noise transistors.
It is possible to use simple lengths of wire, but these usually
operate well only on a limited range of frequencies, and you will
need to cover the entire HF spectrum. Active antennas can be obtained
by mail order from suppliers advertising in amateur radio
magazines--the Datong is highly recommended.
** Page 101
Interface The 'interface' is the equivalent of the modem in landline
communications; indeed, advertisements of newer products actually refer to
radio modems. Radio tele-type, or RTTY, as it is called, is traditionally
received on a modified teleprinter or telex machine; and the early interfaces
or terminal units (TUs) simply converted the received audio tones into 'mark'
and 'space' to act as the equivalent of the electrical line conditions of a
telex circuit. Since the arrival of the microcomputer, however, the design
has changed dramatically and the interface now has to perform the following
functions:
1 Detect the designated audio tones
2 Convert them into electrical logic states
3 Strip the start/stop bits, convert the Baudot code into ASCII
equivalents, reinsert start/stop bits
4 Deliver the new signal into an appropriate port on the computer.
(If RS232C is not available, then any other port, e.g. Game, that
is)
A large number of designs exist: some consist of hardware
interfaces plus a cassette, disc or ROM for the software; others
contain both the hardware for signal acquisition and firmware for its
decoding in one box.
Costs vary enormously and do not appear to be related to quality
of result. The kit-builder with a ZX81 can have a complete set-up for
under £40; semi-professional models, including keyboards and screen
can cost in excess of £1000.
The kit I use is based on the Apple II (because of that model's
great popularity in the USA, much hardware and software exists); the
interface talks into the game port and I have several items of
software to present Baudot, ASCII or Morse at will. There is even
some interesting software for the Apple which needs no extra
hardware--the audio from the receiver is fed direct into the cassette
port of the Apple, but this method is difficult to replicate on other
machines because of the Apple's unique method of reading data from
cassette.
** Page 102
Excellent inexpensive hard/firmware is available for many Tandy
computers, and also for the VlC20/Commodore 64. On the whole US
suppliers seem better than those in the UK or Japan-- products are
advertised in the US magazines QST and 73.
Setting Up Particular attention should be paid to linking all the
equipment together; there are special problems about using sensitive
radio receiving equipment in close proximity to computers and VDUs.
Computer logic blocks, power supplies and the synchronising pulses on
VDUs are all excellent sources of radio interference (rfi). RFI
appears not only as individual signals at specific points on the
radio dial, but also as a generalised hash which can blank out all
but the strongest signals.
Interference can escape from poorly packaged hardware, but also
from unshielded cables which act as aerials. The remedy is simple to
describe: encase and shield everything, connecting all shields to a
good earth, preferably one separate from the mains earth. In
practice, much attention must be paid to the detail of the
interconnections and the relative placing of items of equipment. In
particular, the radio's aerial should use coaxial feeder with a
properly earthed outer braid, so that the actual wires that pluck the
signals from the ether are well clear of computer-created rfi. It is
always a good idea to provide a communications receiver with a proper
earth, though it will work without one: if used with a computer, it
is essential.
Do not let these paragraphs put you off; with care excellent
results can be obtained. And bear in mind my own first experience:
ever eager to try out same new kit, I banged everything together with
great speed--ribbon cable, poor solder joints, an antenna taped
quickly to a window in a metal frame less than two meters from the
communications receiver--and all I could hear from 500 kHz to 30
MHz, wherever I tuned, was a great howl-whine of protest...
Where to listen
Scanning through the bands on a good communications receiver, you
realise just how crowded the radio spectrum is. The table in Appendix
VI gives you an outline of the sandwich-like fashion in which the
bands are organised.
The 'fixed' bands are the ones of interest; more particularly, the
following ones are where you could expect to locate news agency
transmissions (in kHz):
** Page 103
3155 -- 3400 14350 -- 14990
3500 -- 3900 15600 -- 16360
3950 -- 4063 17410 -- 17550
4438 -- 4650 18030 -- 18068
4750 -- 4995 18168 -- 18780
5005 -- 5480 18900 -- 19680
5730 -- 5950 19800 -- 19990
6765 -- 7000 20010 -- 21000
7300 -- 8195 21850 -- 21870
9040 -- 9500 22855 -- 23200
ggoo -- 9995 23350 -- 24890
10100 -- 11175 25010 -- 25070
11400 -- 11650 25210 -- 25550
12050 -- 12330 26175 -- 28000
13360 -- 13600 29700 -- 30005
13800 -- 14000
In addition, amateurs tend to congregate around certain spots on the
frequency map: 3590, 14090, 21090, 28090, and at VHF/UHF: 144.600,
145.300, MHz 432.600, 433.300.
Tuning In
Radio Teletype signals have a characteristic two-tone warble sound
which you will hear properly only if your receiver is operating in
SSB (single-side-band) mode. There are other digital tone-based
signals to be heard: FAX (facsimile), Helschcrieber (which uses a
technique similar to dot-matrix printers and is used for Chinese and
related pictogram-style alphabets), SSTV (slow scan television, which
can take up to 8 seconds to send a low-definition picture), and
others.
But with practice, the particular sound of RTTY can easily be
recognised. More experienced listeners can also identify shifts and
speeds by ear.
You should tune into the signal watching the indicators on your
terminal unit to see that the tones are being properly captured--
typically, this involves getting two LEDs to flicker simultaneously.
The software will now try to decode the signal, and it will be up
to you to set the speed and 'sense'. The first speed to try is 66/7
words per minute, which corresponds to 50 baud, as this is the most
common. On the amateur bands, the usual speed is 60 words per minute
(45 baud); thereafter, if the rate sounds unusually fast, you try 100
words per minute (approximately 75 baud).
** Page 104
By 'sense' or 'phase' is meant whether the higher tone corresponds
to logical 1 or logical 0. Services can use either format; indeed
the same transmission channel may use one 'sense' on one occasion and
the reverse 'sense' on another. Your software can usually cope with
this. If it can't, all is not lost: you retune your receiver to the
opposite, side-band and the phase will thereby be reversed. So, if
you are listening on the lower side-band (LSB), usually the
conventional way to receive, you simply switch over to USB (upper
side-band), retune the signal into the terminal unit, and the sense'
will have been reversed.
Many news agency stations try to keep their channels open even if
they have no news to put out: usually they do this by sending test
messages like: 'The quick brown fox....' or sequences like
'RYRYRYRYRYRY...' such signals are useful for testing purposes, if
a little dull to watch scrolling up the VDU screen.
You will discover many signals that you can't decode: the
commonest reason is that the transmissions do not use European
alphabets, and all the elements in the Baudot code have been
re-assigned--some versions of Baudot use not one shift, but two, to
give the required range of characters. Straightforward en- crypted
messages are usually recognisable as coming in groups of five
letters, but the encryption can also operate at the bit- as well as
at the character-level -- in that case, too, you will get
gobbleydegook.
A limited amount of ASCII code as opposed to Baudot is to be
found, but mostly on the amateur bands.
Finally, an error-correction protocol, called SITOR, is
increasingly to be found on the maritime bands, with AMTOR, an amateur
variant, in the amateur bands, SITOR has various modes of operation
but, in its fullest implementation, messages are sent in blocks which
must be formally acknowledged by the recipient before the next one is
despatched. The transmitter keeps trying until an acknowledgement is
received. You may even come across, on the amateur bands, packet
radio, which has some of the features of packet switching on digital
land lines. This is one of the latest enthusiasms in amateur radio
with at least two different protocols in relatively wide use.
Discussion of SITOR and packet radio is beyond the scope of this
book, but the reader is referred to BARTG (the British Amateur Radio
Teletype Group) and its magazine Datacom for further information. You
do not need to be a licensed radio amateur to join. The address is:
27 Cranmer Court, Richmond Road, Kingston KT2 SPY.
Operational problems of radio hacking are covered at the end of
Appendix I, the Baudot code is given Appendix IV and an outline
frequency plan is to be found in Appendix VI.
** Page 105
The material that follows represents some of the types of common
transmissions: news services, test slips (essentially devices for
keeping a radio channel open), and amateur. The corruption in places
is due either to poor radio propagation conditions or to the presence
of interfering signals.
REVUE DE LA PRESSE ITALIENNE DU VENDREDI 28 DECEMBRE 1984
LE PROCES AUX ASSASSINS DE L~ POIELUSZKO, LA VISITE DE
M. SPADOLINI A ISRAEL, LA SITUATION AU CAMBODGE ET LA GUER-
ILLA AU MOZAMBIQUE FONT LES TITES DES PAGES POLITIQUES
MOBILISATION TO WORK FOR THE ACCOUNT OF 1985
- AT THE ENVER HOXHA AUTOMOBILE AND
TRACTOR COMBINE IN TIRANA 2
TIRANA, JANUARY XATA/. - THE WORKING PEOPLE OF THE ENVER HOXH~/
AUTOMOBILE AND TRACTOR COMBINE BEGAN THEIR WORR WITH VIGOUR
AND MOBILISATION FOR THE ACCOUNT OF 1985. THE WORK IN THIS
IMPROVOWNT CENTER FOR MECHANICAL INDUSTRY WAS NOT INTERRUPTED
FOR ONE MOMENT AND THE WORKING PEOPLE 8~S ONE ANOTHER FOR
FRESHER GREATER VICTORIES UNDER THE LEADERSHIP OF THE PARTY
WITH ENVER HOXHA AT THE HEAD, DURING THE SHIFTS, NEAR
THE FURNANCES~ PRESSES ETC.. JUST LIKE SCORES OF WORKING COLLE-
CTIVES OF THE COUNTRY WHICH WERE NOT AT HOME DURING THE NEW
YEAR B
IN THE FRONTS OF WORK FOR THE BENEFITS OF THE SOCI-
ALIST CONSTRUCTION OF THE COUNTRY.
PUTTING INTO LIFE THE TEACHINGS OF THE PARTY AND THE INSTRU-
CTIONS OF COMRADE ENVER HOXHA, THE WORKING COLLECTIVE OF THIS
COMBINE SCORED FRESH SUCCESSES DURING 1984 TO REALIZE THE
INDICES OF THE STATE PLAN BY RASING THE ECEONOMIC EFFECTIVE-
NESS. THE WORKING PEOPLE SUCCESSFULLY REALIZED AND OVERFUL
FILLED THE OBJECTIVE OF THE REVOLUTIONARY DRIVE ON THE HIGHER
EFFECTIOVENESS OF PRODUCTION, UNDERTAKEN IN KLAIDQAULSK SO~
WITHIN 1984 THE PLANNED PRODUCTIVITY, ACCORDING TO THE INDEX
OF THE FIVE YEAR PLAN, WAS OVERFULFILLED BY 2 PER CENT.
MOREOVER, THE FIVE YEAR PLAN FOR THE GMWERING OF THE COST OF
PRODUCTION WAS RAISED 2 MONTHS AHEAD OF TIME, ONE FIVE YEAR
PLAN FOR THE PRODUCTION OF MACHINERIES LAND EQUIPMENT AND
THE PRODUCTION OF THE TRACTORS WAS OVER-
FULFILLED. THE NET INCOME OF THE FIVE YEAR PLAN WAS REALIZED
WITHIN 4 YEARS. ETCM
YRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRY
RYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYR
** Page 106
YRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRY
YRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRY
RYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYRYR~ u UL ~v_.~v
GJ4YAD GJ4YAD DE G4DF G4DF
SOME QRM BUT MOST OK. THE SHIFT IS NORMAL...SHIFT IS NORMAL.
FB ON YOUR RIG AND NICE TO MEET YOU IN RTTY. THE WEATHER HERE
TODAY IS FINE AND BEEN SUNNY BUT C9LD. I HAVE BEEN IN THIS MODE
BEFORE BUT NOT FOR A FEW YEARS HI HI.
GJ4YAD GJ4YAD DE G4DF G4DF
PSE KKK
G4ElE G4EJE DE G3IMS G3IMS
TNX FOR COMING BACk. RIG HERE IS ICOM 720A BUT I AM SENDING
AFSk; NOT FSk'. I USED TO HAVE A CREED BUT CHUCKED IT OUT IT WAS
TOO NOISY AND NOW HAVE VIC2D SYSTEM AND SOME US kIT MY SON
BROUGHT ME HE TRAVELS A LOT.
HAD LOTS OF TROUBLE WITH RFI AND HAVE NOT YET CURED IT. VERTY BAD
QRM AT MOMENT. CAN GET NOTHING ABOVE 1CI MEGS AND NOT MUCH EX-G ON
S(:). HI HI. SUNSPOT COUNT IS REALLY LOW.
G4EJE G4EJE DE G3IMS G3IMS
~I.Of;KKKk'KKKK
RYRYRYRYRYRYRYRYRYR
~K~fk'KKKKKKK
G3IMS G3IMS DE G4EJE G4EJE
FB OM. URM IS GETTING WORSE. I HAVE ALWAYS LIk.ED ICOM RIGS BUT
THEY ARE EXEPENSIVE. CAN YOU RUN FULL 1QCI PER CENT DUTY CYCLE ON
RTTY OR DO YOU HAVE TO RUN AROUND 50 PER CENT. I GET OVER-HEATING
ON THIS OLD YAESU lQl. WHAT SORT OF ANTENNA SYSTEM DO YOU USE.
HERE IS A TRAPPED VERTICAL WITH 8CI METERS TUNED TO RTTY SPOT AT
~;59(:1.
I STILL USE CREED 7 THOUGH AM GETTING FED UP WITH MECHANICAL
BREAK- W WN AND NOISE BUT I HAVE HEARD ABOUT RFI AND HOME
COMPUTER5. MY NEPHEW HAS A SPECTRUM, CAN YOU GET RTTY SOFTWARE
FOR THAT/.
G3IMs G3IMS DE G4EJE G4EJE
** Page 107
CHAPTER 10
Hacking: the Future
Security is now probably the biggest single growth area within the
mainstream computer business. At conference after conference,
consultants compete with each other to produce the most frightening
statistics.
The main concern, however, is not hacking but fraud. Donn Parker,
a frequent writer and speaker on computer crime based at the Stanford
Research Institute has put US computer fraud at $3000 million a year;
although reported crimes amount to only $100 million annually. In
June 1983 the Daily Telegraph claimed that British computer-related
frauds could be anything between £500 million and £2.5 billion a
year. Detective Inspector Ken McPherson, head of the computer crime
unit at the Metropolitan Police, was quoted in 1983 as saying that
within 15 years every fraud would involve a computer. The trouble is,
very few victims are prepared to acknowledge their losses. To date,
no British clearing bank has admitted to suffering from an
out-and-out computer fraud, other than the doctoring of credit and
plastic ID cards. Few consultants believe that they have been immune.
However, to put the various threats in perspective, here are two
recent US assessments. Robert P Campbell of Advanced Information
Management, formerly head of computer security in the US Army,
reckons that only one computer crime in 100 is detected; of those
detected, 15 per cent or fewer are reported to the authorities, and
that of those reported, one in 33 is successfully prosecuted--a
'clear-up' rate of one in 22,000.
And Robert Courtney, former security chief at IBM produced a list
of hazards to computers: 'The No 1 problem now and forever is errors
and omissions'. Then there is crime by insiders, particularly
non-technical people of three types: single women under 35; 'little
old ladies' over 50 who want to give the money to charity; and older
men who feel their careers have left them neglected. Next, natural
disasters. Sabotage by disgruntled employees. Water damage. As for
hackers and other outsiders who break in, he estimates it is less
than 3 per cent of the total.
** Page 108
Here in the UK, the National Computing Centre says that at least
90 per cent of computer crimes involve putting false information into
a computer, as opposed to sophisticated logic techniques; such crimes
are identical to conventional embezzlement: looking for weaknesses
in an accounting system and taking advantage. In such cases the
computer merely carries out the fraud with more thoroughness than a
human, and the print-out gives the accounts a spurious air of being
correct.
In the meantime, we are on the threshold of a new age of
opportunities for the hacker. The technology we can afford has
suddenly become much more interesting.
The most recent new free magazines to which I have acquired
subscriptions are for owners of the IBM PC, its variants and clones.
There are two UK monthlies for regular users, another for corporate
buyers and several US titles.
The IBM PC is only partly aimed at small business users as a
stand-alone machine to run accounting, word processing, spread- sheet
calculation and the usual business dross; increasingly the marketing
is pitching it as an executive work-station, so that the corporate
employee can carry out functions not only local to his own office,
but can access the corporate mainframe as well--for data, messaging
with colleagues, and for greater processing power.
In page after page, the articles debate the future of this
development--do employees want work-stations? Don't many bosses still
feel that anything to do with typing is best left to their secretary?
How does the executive workstation relate to the mainframe? Do you
allow the executive to merely collect data from it, or input as well?
If you permit the latter, what effect will this have on the integrity
of the mainframe's files? How do you control what is going on? What
is the future of the DP professional? Who is in charge?
And so the articles go on. Is IBM about to offer packages which
integrate mainframes and PCs in one enormous system, thus effectively
blocking out every other computer manufacturer and software publisher
in the world by sheer weight and presence?
I don't know the answers to these questions, but elsewhere in
these same magazines is evidence that the hardware products to
support the executive workstation revolution are there--or, even if
one has the usual cynicism about computer trade advertising ahead of
actual availability, about to be.
The products are high quality terminal emulators, not the sort of
thing hitherto achieved in software--variants on asynchronous
protocols with some fancy cursor addressing--but cards capable of
supporting a variety of key synchronous communications, like 327x
(bisynch and SDLC), and handling high-speed file transfers in CICs,
TSO, IMS and CMS.
** Page 109
These products feature special facilities, like windowing or
replicate aspects of mainframe operating systems like VM (Virtual
Machine), giving the user the experience of having several different
computers simultaneously at his command. Other cards can handle IBM's
smaller mini- mainframes, the Systems/34 and /38. Nor are other
mainframe manufacturers with odd-ball comms requirements ignored:
ICL, Honeywell and Burroughs are all catered for. There are even
several PC add-ons which give a machine direct X.25; it can sit on a
packet-switched network without the aid of a PAD.
Such products are expensive by personal micro standards, but it
means that, for the expenditure of around £8000, the hacker can call
up formidable power from his machine. The addition of special
environments on these new super micros which give the owner direct
experience of mainframe operating systems--and the manuals to go with
them--will greatly increase the population of knowledgeable computer
buffs. Add to this the fact that the corporate workstation market, if
it is at all succesful, must mean that many executives will want to
call their mainframe from home --and there will be many many more
computer ports on the PTSN or sitting on PSS.
There can be little doubt that the need for system security will
play an increasing role in the specification of new mainframe
installations. For some time, hardware and software engineers have
had available the technical devices necessary to make a computer
secure; the difficulty is to get regular users to implement the
appropriate methods--humans can only memorise a limited number of
passwords. I expect greater use will be made of threat monitoring
techniques: checking for sequences of unsuccessful attempts at
logging in, and monitoring the level of usage of customers for
extent, timing, and which terminals or ports they appear on.
The interesting thing as far as hackers are concerned is that it
is the difficulty of the exercise that motivates us, rather than the
prospect of instant wealth. It is also the flavour of naughty, but
not outright, illegality. I remember the Citizens Band radio boom of
a few years ago: it started quietly with just a handful of London
breakers who had imported US sets, really simply to talk to a few
friends. One day everyone woke up, switched on their rigs and
discovered overnight there was a whole new sub-culture out there,
breathing the ether. Every day there were more and more until no
spare channels could be found. Then some talented engineers found out
how to freak the rigs and add another 40 channels to the original 40.
And then another 40. Suddenly there were wholesalers and retailers
and fanzines, all selling and promoting products the using or
manufacturing of which was illegal under British law.
** Page 110
Finally, the government introduced a legalised CB, using different
standards from the imported US ones. Within six months the illegal
scene had greatly contracted, and no legal CB service of comparable
size ever took its place. Manufacturers and shop- keepers who had
expected to make a financial killing were left with warehouses full
of the stuff. Much of the attraction of AM CB was that it was
forbidden and unregulated. There is the desire to be an outlaw, but
clever and not too outrageous with it, in very many of us.
So I don't believe that hacking can be stopped by tougher
security, or by legislation, or even by the fear of punishment.
Don't get me wrong: I regard computers as vastly beneficial. But
they can threaten our traditional concepts of freedom, individuality
and human worth I like to believe hacking is a curious
re-assertion of some of those ideas.
The challenge of hacking is deeply ingrained in many computer
enthusiasts; where else can you find an activity the horizons of
which are constantly expanding, where new challenges and dangers can
be found every day, where you are not playing a visibly artificial
'game', where so much can be accessed with so little resource but a
small keyboard, a glowing VDU, an inquisitive and acquisitive brain,
and an impish mentality?